Efficient Traceable Authorization Search System for Secure Cloud Storage

ABSTRACT:

Secure search over encrypted remote data is crucial in cloud computing to guarantee the data privacy and usability. To prevent unauthorized data usage, fine-grained access control is necessary in multi-user system. However, authorized user may intentionally leak the secret key for financial benefit. Thus, tracing and revoking the malicious user who abuses secret key needs to be solved imminently. In this paper, we propose an escrow free traceable attribute based multiple keywords subset search system with verifiable outsourced decryption (EF-TAMKS-VOD). The key escrow free mechanism could effectively prevent the key generation centre (KGC) from unscrupulously searching and decrypting all encrypted files of users. Also, the decryption process only requires ultra lightweight computation, which is a desirable feature for energy-limited devices. In addition, efficient user revocation is enabled after the malicious user is figured out. Moreover, the proposed system is able to support flexible number of attributes rather than polynomial bounded. Flexible multiple keyword subset search pattern is realized, and the change of the query keywords order does not affect the search result. Security analysis indicates that EF-TAMKS-VOD is provably secure. Efficiency analysis and experimental results show that EF-TAMKS-VOD improves the efficiency and greatly reduces the computation overhead of users’ terminals.

SYSTEM REQUIREMENTS:

HARDWARE REQUIREMENTS: 

·         System : Pentium Dual Core.

·         Hard Disk : 120 GB.

·         Monitor : 15’’ LED

·         Input Devices : Keyboard, Mouse

·         Ram : 1 GB

SOFTWARE REQUIREMENTS: 

·         Operating system : Windows 7.

·         Coding Language : JAVA/J2EE

·         Tool : Netbeans 7.2.1

·         Database : MYSQL

REFERENCE:

Yang Yang, Member, IEEE, Ximeng Liu, Member, IEEE, Xianghan Zheng, Chunming Rong, Member, IEEE, Wenzhong Guo, Member, IEEE, “Efficient Traceable Authorization Search System for Secure Cloud Storage”, IEEE Transactions on Cloud Computing, 2018.